firmfunda
  maths > vector-algebra

Cross Product: Component Form


    what you'll learn...

Overview

Vector Cross Product: Component Form

p×q=|ijkpxpypzqxqyqz|

=(pyqz-pzqy)i +(pzqx-pxqz)j +(pxqy-pyqx)k

in component form

vector cross product first principles

Given p=pxi+pyj+pzk and q=qxi+qyj+qzk and |p×q|=|p||q|sinθ
How to find sinθ, or the cross product in the component form?

Component form of vector cross product : geometrical proof

|p×q|
    =|p||q|sinθ
    =|p||q|1-cos2θ
    =|p|2|q|2-|p|2|q|2cos2θ
    =|p|2|q|2-|pq|2

Substitute the following
|p|2=(px2+py2+pz2)
|q|2=(qx2+qy2+qz2)
|pq|2=(pxqx+pyqy+pzqz)2
and after some algebraic rearrangement, the following is arrived at

|p×q|
    =(pyqz-pzqy)2
        +(pzqx-pxqz)2¯
        +(pxqy-pyqx)2¯
    =(pyqz-pzqy)i
        +(pzqx-pxqz)j
        +(pxqy-pyqx)k

It is proven that
p×q
    =(pyqz-pzqy)i
        +(pzqx-pxqz)j
        +(pxqy-pyqx)k

The same can be written in the determinant form
p×q=|ijkpxpypzqxqyqz|

easier proof

The proof given above is complex. A simpler proof, that a student can easily derive, is given below.

Bilinear Property: For any vector p,q,rV and λ
(λp+q)×r=λ(p×r)+(q×r)
This is explained and proven in properties of the cross product. For now, consider this to be true.

A vector p=pxi+pyj+pzk is sum of scalar multiple of vectors. i,j,k are unit vectors, and the scalar multiples are px,py,pz.

The same applies to q=qxi+qyj+qzk -- sum of multiple of vectors.

Proof for component form of vector cross product using bilinear property of cross product.

p×q
    =(pxi+pyj+pzk)×
        (qxi+qyj+qzk)
Applying bilinear property of cross product
    =pxi×(qxi+qyj+qzk)
        +pyj×(qxi+qyj+qzk)
        +pzk×(qxi+qyj+qzk)
Applying i×i=0, j×j=0, k×k=0
i×j=k, j×k=i, k×i=j
j×i=-k, k×j=-i, i×k=-j

After algebraic rearrangement, we get
p×q
    =(pyqz-pzqy)i
        +(pzqx-pxqz)j
        +(pxqy-pyqx)k

summary

vector cross product first principles

Vector Cross Product: for vectors p,q3
p×q=|ijkpxpypzqxqyqz|

Vector Cross Product between two vectors in component form is defined as a vector from a determinant.

Outline

The outline of material to learn vector-algebra is as follows.

Note: Click here for detailed outline of vector-algebra.

•   Introduction to Vectors

    →   Introducing Vectors

    →   Representation of Vectors

•   Basic Properties of Vectors

    →   Magnitude of Vectors

    →   Types of Vectors

    →   Properties of Magnitude

•   Vectors & Coordinate Geometry

    →   Vectors & Coordinate Geometry

    →   Position Vector of a point

    →   Directional Cosine

•   Role of Direction in Vector Arithmetics

    →   Vector Arithmetics

    →   Understanding Direction of Vectors

•   Vector Addition

    →   Vector Additin : First Principles

    →   Vector Addition : Component Form

    →   Triangular Law

    →   Parallelogram Law

•   Multiplication of Vector by Scalar

    →   Scalar Multiplication

    →   Standard Unit Vectors

    →   Vector as Sum of Vectors

    →   Vector Component Form

•   Vector Dot Product

    →   Introduction to Vector Multiplication

    →   Cause-Effect-Relation

    →   Dot Product : First Principles

    →   Dot Product : Projection Form

    →   Dot Product : Component Form

    →   Dot Product With Direction

•   Vector Cross Product

    →   Vector Multiplication : Cross Product

    →   Cross Product : First Principles

    →   Cross Product : Area of Parallelogram

    →   Cross Product : Component Form

    →   Cross Product : Direction Removed