firmfunda
  maths > construction-basics

Construction of Rectangles


    what you'll learn...

overview

In this page, constructing rectangles is explained. It is outlined as follows.

 •  Properties of rectangles is explained

 •  The number of independent parameters in a rectangle is 11

 •  For a given parameter, construction of rectangles is approached as combination of triangles (sss, sas, asa, rhs, sal) and using the properties of rectangles.

understanding rectangle

A rectangle is a parallelogram with all interior angles 9090

rectangle introduction

A quadrilateral is defined by 55 parameters. A Parallelogram is defined by 33 parameters. And for a rectangle, the following properties provide additional dependency of parameters.

 •  all interior angles are 9090

 •  diagonals are equal and bisect

 •  opposite sides are parallel and equal

 •  two angles on diagonals are supplementary.

These properties cause one parameter to be dependent on other parameters and so, a rectangle is defined by 22 parameters.

rectangle construction 2 sides

To construct a rectangle, 2 sides (¯AB, ¯BC) are given. This is illustrated in the figure. To construct, consider this as two SAS triangles ABC and ABD.

rectangle construction a side and the diagonal

To construct a rectangle, a side (¯AB) and the diagonal (¯AC) are given. This is illustrated in the figure. To construct, consider this as two RHS triangles ABC and ABD.

rectangle construction a side and the diagonal

To construct a rectangle, the diagonal (¯AC) and the angle between them (DOC) are given. This is illustrated in the figure.

To construct the specified rectangle, "Consider this as two SAS triangle COD and AOB". Note: Use the property that diagonals bisect and mark the vertices at half diagonals.

summary

rectangle introduction

Construction of Rectangles :

Properties of rectangle

 •  all interior angles are 90

 •  diagonals are equal and bisect

 •  opposite sides are parallel and equal

The formulations of questions

 •  2 sides

 •  1 side and the diagonal

 •  the diagonal and an angle between the diagonals

use properties to figure out dependent parameters and look for triangles

Outline

The outline of material to learn "Construction / Practical Geometry at 6-8th Grade level" is as follows. Note: click here for detailed outline of "constructions / practical geometry".

  •   Four Fundamenatl elements

    →   Geometrical Instruments

    →   Practical Geometry Fundamentals

  •   Basic Shapes

    →   Copying Line and Circle

  •   Basic Consustruction

    →   Construction of Perpendicular Bisector

    →   Construction of Standard Angles

    →   Construction of Triangles

  •   Quadrilateral Forms

    →   Understanding Quadrilaterals

    →   Construction of Quadrilaterals

    →   Construction of Parallelograms

    →   Construction of Rhombus

    →   Construction of Trapezium

    →   Construction of Kite

    →   Construction of Rectangle

    →   Construction of Square