firmfunda
  maths > calculus-limits

Limit of functions evaluating to


    what you'll learn...

Limit of Expressions evaluating to

 »  Organize the sub-expressions to the following

    →  a=0a=0

    →  ±a=±a=

    →  ×a=×a= when a0a0

    →  ×=

    →  n= when n0

    →  limxxx=1

    →  limx-xx=1

    →  limxax `=0 text( if ) 0       = if a>1

addition of infinity

The value of function f(x)=3x2+5x-2 at x= can be found by substituting x=

(3x2+5x-2)
    =(3()2+5-2)
    =
as 2=; n=; and ±a=

The value of function f(x)=13x2+5x-2 at x= can be found by substituting x=

13x2+5x-2
    =13()2+5-2
    =1
    =0
as 1=0.

subtraction of infinity

The value of function f(x)=3x2-5x-2 at x= is first tried with substituting x=
3x2-5x-2
    =32-5-2
    =-
    =00

as 2=; n=; and ±a=


It is noted that - is neither nor 0. It is indeterminate value

-
    =(10)-(10)
    =1-10
    =00


division of infinity

The value of function f(x)=3x2+5x-2x2+x-2 at x= is first tried with substituting x equals infinity.

3x2+5x-2x2+x-2
    =3()2+5-22+-2
    =
    =00

as 2=; n=; and ±a=


It is noted that ÷ is neither nor 0. It is indeterminate value

÷
    =(10)÷(10)
    =10×01
    =00


watch-out

The forms of expressions evaluate to indeterminate values when computing limit for or - are ÷ and -.

what to do

When we encounter ÷ or -, convert the expression to one of the following forms given on left hand side
limxxx=1
limx-xx=1
a=0
n=
n=
±a=

examples

Limit of function f(x)=(3x2-5x-2) at x=
The function evaluates to - at x=

The limit of the function is
limx(3x2-5x-2)
    =limxx2(2-5x-2x2)
    =limxx2
        ×limx(2-5x-2x2)
    =2×(2-0-0)
    =


Function f(x)=3x2+5x-2x2+x-2 at x=
The function evaluates to at x=

The limit of the function is
limx3x2+5x-2x2+x-2
    =limxx2(3+5x-2x2)x2(1+1x-2x2)
    =limxx2x2
        ×limx3+5x-2x21+1x-2x2
    =[limxxx]2×3+0-01+0-0
    =12×3
    =3


When evaluating limits to infinity or minus infinity, simplify to known results.

Find the limit of the function limxx+35x+4

The answer is '15'.

summary

Evaluating limits to or -: Simplify the numerical expressions to one of the following
limxxx=1
limx-xx=1
a=0
±a=
n= where n0
×= or
n= where n0
And avoid indeterminate values , -, 0×, and 0 .

Outline

The outline of material to learn "limits (calculus)" is as follows.

Note : click here for detailed outline of Limits(Calculus).

    →   Indeterminate and Undefined

    →   Indeterminate value in Functions

    →   Expected Value

    →   Continuity

    →   Definition by Limits

    →   Geometrical Explanation for Limits

    →   Limit with Numerator and Denominator

    →   Limits of Ratios - Examples

    →   L'hospital Rule

    →   Examining a function

    →   Algebra of Limits

    →   Limit of a Polynomial

    →   Limit of Ratio of Zeros

    →   Limit of ratio of infinities

    →   limit of Binomial

    →   Limit of Non-algebraic Functions