Processing math: 75%

firmfunda
  maths > calculus-limits

Examining Function at an input value


    what you'll learn...

Examining Function at an input Value

 »  A function f(x) at x=a is

    →  continuous: if f(a) = LHL = RHL

    →  defined by value: if f(a) is a real number

    →  defined by limit: if f(a)=00 and LHL = RHL

    →  not defined: if LHL RHL and f(a)

Limit of a Continuous Function

 »  A function f(x) at x=a is
limit x=a     →  continuous: if f(a) = LHL = RHL

Limit of a defined Function

 »  A function f(x) at x=a is
limit x=a     →  defined by limit: if f(a)=00 and LHL = RHL

Limit of Piecewise function

 »  A function f(x) at x=a is
limit x=a     →  not continuous and not defined: if LHL RHL

Limit of Function with abrupt change

limit abrupt change

 »  A function f(x) at x=a is
    →  continuous: if f(a) = LHL = RHL

Limit of Functions that are not defined

limit not defined

 »  A function f(x) at x=a is
    →  not defined: if LHL RHL and f(a)

check nature of function at a point

To decide if a function f(x) is defined at an input value x=a, the following are examined.

f(x)x=a

limxa-f(x)

limxa+f(x)

It is important to note that the L'Hospital's rule is applicable only if the limit exists. The discussion in this topic is about finding if the limit exists or not. So the L'Hospital's rule is not used in finding the limits.

When a function is examined at an input value, the possible deductions one can make about the function at that input value are

Function is continuous.

Function is not continuous but defined.

Function is not continuous and not defined.

Whether a function is continuous or defined or not defined is determined by examining
 • value at the input value,

 • left-hand-limit at the input value, and

 • right-hand-limit at the input value.

summary

Describing a function: A function f(x) is evaluated for three values to describe at an input value x=a

 •  f(a)

 •  limxa-f(x)

 •  limxa+f(x)

limit of continuous functions

limit of continuous function

Consider f(x)=1x2+1

f(x)x=1
Substitute x=1
=11+1
=12

left hand limit of continuous function

Given function f(x)=1x2+1.

The left-hand-limit limx1-f(x)
    =1(1-δ)2+1
    =11-2δ+δ2+1
    =12-2δ+δ2
    =12         (substituting δ=0)

right hand limit of continuous function

Given function f(x)=1x2+1.

The right-hand-limit limx1+f(x)
    =1(1+δ)2+1
    =11+2δ+δ2+1
    =12+2δ+δ2
    =12         (substituting δ=0)

defined function limits

Given function f(x)=1x2+1.
 •  f(1)=12
 •  limx1-f(x)=12
 •  limx1+f(x)=12



The function is continuous at x=1.

Note: Though, as part of the topic, the functions that are discontinuous or indeterminate or non-differentiable are mainly handled, finding limits is not only for those kind of functions. Any function at any point can be evaluated for limits.

Function is continuous if all three values (1) function evaluated at the point, (2) left-hand-limit at the point and (3) right-hand-limit at the point are equal.

example

Given function f(x)=sinx, is it continuous at input values x=0,π2,π?

The answer is 'Continuous at all three input values'. This is a trivial problem as there is no

summary

Function is continuous: if f(a) =limxa-f(x) =limxa+f(x), then the function is continuous at x=a.

Limit of defined functions

limit of defined function

Given function f(x)=x2-1x-1.

f(x)x=1 Substituting x=1 =1-11-1 =00

left hand limit of defined function

Given function f(x)=x2-1x-1.

The left-hand-limit limx1-f(x)
    =(1-δ)2-1(1-δ)-1
    =1-2δ+δ2-11-δ-1
    =-δ(2-δ)-δ
    =2-δ
    =2 (substituting δ=0)

right hand limit of continuous function

Given function f(x)=x2-1x-1.

The right-hand-limit limx1+f(x)
    =(1+δ)2-1(1+δ)-1
    =1+2δ+δ2-11+δ-1
    =δ(2+δ)δ
    =2+δ
    =2 (substituting δ=0)

limits of a defined function

Given function f(x)=x2-1x-1.

 •  f(1)=00 indeterminate value

 •  limx1-f(x)=2

 •  limx1+f(x)=2
The function is defined at x=1.

When left-hand-limit and right-hand-limit are equal, then limit is defined. The two limits together are referred as "limit of the function".
That is, when it is mentioned / referred as "limit of a function", it means, both left and right hand limits are equal.


If the left hand and right hand limits are equal then the limit is defined at that input value.

If the function evaluates to indeterminate value and the limit is defined, then the function is defined by the limits.

example

Find if the function f(x)=3x2-2x-8x-2 is continuous or defined at x=2?

The answer is 'Not Continuous and Defined'

summary

Limit is defined: If limxa-f(x) =limxa+f(x) then the limits are commonly given as limxaf(x)
Function is defined by Limit: If f(a) and limxa-f(x) =limxa+f(x), then the function is defined by limit at x=a.

Limit of piecewise functions

limit of not differentiable function

Given piecewise function
f(x)={1  for  x10.5  for  x<1

f(x)x=1=1 as given by definition of the function.

left-hand-limit of not differentiable function

Given function
f(x)={1  for  x10.5  for  x<1

The left-hand-limit limx1-f(x)
    =f(x)x=1-δ
    =0.5         (as 1-δ<1)

right-hand-limit of not differentiable function

Given function
f(x)={1  for  x10.5  for  x<1

The right-hand-limit limx1+f(x)
    =f(x)x=1+δ
    =1         (as 1+δ>1)

not differentiable function limits

Given function
f(x)={1  for  x10.5  for  x<1

 •  f(1)=1

 •  limx1-f(x)=0.5

 •  limx1+f(x)=1

The function is not continuous at x=1. But, the function is defined by the given definition of the function.

If the function evaluates to a real number, then the function is defined at that input value. The limit need not be defined.

example

Given function
f(x)={2x  for  x>2x2  for  x=2|x|+2  for  x<2
Examine the function at x=2.

The answer is 'All the above'.

summary

Function is defined by value: If f(a), and limxa-f(x) limxa+f(x), then function is not continuous but defined by the definition of the function.

Limit of functions with abrupt change

limit of not differentiable function

Given function f(x)=|x-1|.

f(x)x=1
=|1-1|
=0

left-hand-limit of not differentiable function

Given function f(x)=|x-1|.

The left-hand-limit limx1-f(x)
    =|1-δ-1|
    =|-δ|
    =δ
    =0         substituting δ=0

right-hand-limit of not differentiable function

Given function f(x)=|x-1|.

The right-hand-limit limx1+f(x)
    =|1+δ-1|
    =|δ|
    =δ
    =0         substituting δ=0

not differentiable function limits

Given function f(x)=|x-1|.

 •  f(1)=0

 •  lim_(x->1-)f(x) = 0

 •  lim_(x->1+)f(x) = 0

The function is continuous at x=1. Note that the function undergoes an abrupt change at x=1.

 •  for x<1, the slope of the line is -1

 •  for x>1, the slope of the line is 1

 •  At x=1, the slope of the line is not defined.

example

Given the function f(x)=|sin x|. Is the function continuous or defined at x=pi?

The answer is 'continuous'

Limit of Functions that are not defined

limit of undefined function

Given function f(x)=tan x.

f(x)|_(x=pi/2)
quad quad = tan(pi/2)
quad quad = oo

left hand limit of undefined function

Given function f(x)=tan x.

The left-hand-limit lim_(x->pi/2-)f(x)
quad quad = f(pi/2-delta)
quad quad = tan(pi/2-delta)
quad quad = (sin(pi/2-delta))/(cos(pi/2-delta))
quad quad = (cos(delta))/(sin(delta))
quad quad = 1/0
quad quad = oo

right hand limit of undefined function

Given function f(x)=tan x.

The right-hand-limit lim_(x->pi/2+)f(x)
quad quad = f(pi/2+delta)
quad quad = tan(pi/2+delta)
quad quad = (sin(pi/2+delta))/(cos(pi/2+delta))
quad quad = (cos(delta))/(-sin(delta))
quad quad = -1/0
quad quad = -oo

not defined function limits

Given function f(x)=tan x.

 •  f(pi/2)=oo

 •  lim_(x->pi/2-)f(x) = oo

 •  lim_(x->pi/2+)f(x) = -oo
The function is not continuous and not defined at x=pi/2.

If the function evaluates to +-oo or 0/0 and the limits are not equal, then the function is not defined at that input value.

If a function does not have value in real numbers and the two limits are not equal then the function is not defined at that input value.

example

Examine the function f(x) = 1/(x-3) at x=3.

The answer is 'Not defined'

summary

Function not Defined: If f(a) !in RR and lim_(x->a-)f(x) !=lim_(x->a+)f(x) then the function is not defined at x=a.

Outline

The outline of material to learn "limits (calculus)" is as follows.

Note : click here for detailed outline of Limits(Calculus).

    →   Indeterminate and Undefined

    →   Indeterminate value in Functions

    →   Expected Value

    →   Continuity

    →   Definition by Limits

    →   Geometrical Explanation for Limits

    →   Limit with Numerator and Denominator

    →   Limits of Ratios - Examples

    →   L'hospital Rule

    →   Examining a function

    →   Algebra of Limits

    →   Limit of a Polynomial

    →   Limit of Ratio of Zeros

    →   Limit of ratio of infinities

    →   limit of Binomial

    →   Limit of Non-algebraic Functions