what you'll learn...
Some Results
Quickly derive the identities. No need to memorize.
» Use (a+b)(a−b)=a2−b2
sin(A+B)sin(A−B)
cos(A+B)cos(A−B)
tan(A+B)tan(A−B)
cot(A+B)cot(A−B)
» 3 angles
sin(A+B+C)=sin(A+(B+C))
cos(A+B+C)=cos(A+(B+C))
result for sine
Consider sin(A+B)sin(A−B)
=(sinAcosB+cosAsinB)
×(sinAcosB−cosAsinB)
=sin2Acos2B−cos2Asin2B
substitute cos2B=(1−sin2B)
=sin2A−sin2B×(sin2A+cos2A)
=sin2A−sin2B
substitute sin2A=(1−cos2A)
=cos2B−cos2A(cos2B+sin2B)
=cos2B−cos2A
sin(A+B)sin(A−B)
=sin2A−sin2B
=cos2B−cos2A
result for cos
Consider cos(A+B)cos(A−B)
=(cosAcosB−sinAsinB)
×(cosAcosB+sinAsinB)
=cos2Acos2B−sin2Asin2B
substitute cos2B=(1−sin2B)
=cos2A−sin2B×(sin2A+cos2A)
=cos2A−sin2B
substitute sin2B=(1−cos2B)
=cos2B(cos2A+sin2A)−sin2A
=cos2B−sin2A
cos(A+B)cos(A−B)
=cos2A−sin2B
=cos2B−sin2A
result for tan
tan(A+B)tan(A−B)
substitute
tan(A+B)=tanA+tanB1−tanAtanB
tan(A−B)=tanA−tanB1+tanAtanB
and multiply numerators and denominators of them
=tan2A−tan2B1−tan2Atan2B
tan(A+B)tan(A−B)
=tan2A−tan2B1−tan2Atan2B
result for cot
cot(A+B)cot(A−B)
Substitute
cot(A+B)=cotAcotB−1cotA+cotB
cot(A−B)=−cotAcotB−1cotA−cotB
and multiply numerator and denominator
=1−cot2Acot2Bcot2A−cot2B
cot(A+B)cot(A−B)
=1−cot2Acot2Bcot2A−cot2B
three angles
sin(A+B+C)
=sin((A+B)+C)
=sin(A+B)cosC+cos(A+B)sinC
=sinAcosBcosC+cosAsinBcosC
+cosAcosBsinC−sinAsinBsinC
sin(A+B+C)
=sinAcosBcosC+cosAsinBcosC
+cosAcosBsinC−sinAsinBsinC
cos(A+B+C)
=cos((A+B)+C)
=cos(A+B)cosC−sin(A+B)sinC
=cosAcosBcosC−sinAsinBcosC
−sinAcosBsinC−cosAsinBsinC
cos(A+B+C)
=cosAcosBcosC−sinAsinBcosC
−sinAcosBsinC−cosAsinBsinC
summary
More results of Trigonometric values for compound Angles
sin(A+B)sin(A−B)
=sin2A−sin2B
=cos2B−cos2A
cos(A+B)cos(A−B)
=cos2A−sin2B
=cos2B−sin2A
tan(A+B)tan(A−B)
=tan2A−tan2B1−tan2Atan2B
cot(A+B)cot(A−B)
=1−cot2Acot2Bcot2A−cot2B
sin(A+B+C)=sin((A+B)+C)
cos(A+B+C)=cos((A+B)+C)