firmfunda
  maths > advanced-trigonometry

Compound Angles: cos(A+B), sin(A-B), cos(A-B)


    what you'll learn...

sin(A-B), cos(A+B), cos(A-B)

 »  sin(A+B) Proven result
Quickly derive the identities. No need to memorize.

 »  sin(A-B)=sin(A+(-B))

 »  cos(A+B)=sin((90-A)-B)

 »  cos(A-B)=sin((90-A)+B)

Geometrical Proof

geometrical proof »  sin(A-B) from RT¯=PQ1¯
»  cos(A-B) from RS¯=PQ¯

algebraic equivalent

It was geometrically proven that cos(A+B)=cosAcosB-sinAsinB. For the same result, we can work out a proof using algebra of trigonometric functions.

cos(A+B)
    =sin(90-A-B)
    =sin[(90-A)+(-B)]
    =sin(90-A)cos(-B)+cos(90-A)sin(-B)
    =cosAcosB-sinAsinB

To calculate trigonometric values for compound angle, we will switch to using the proofs with algebra of trigonometric functions, as it is simpler. But, equivalently a geometrical proof can be worked out.

A-B

Proof for sin(A-B) and cos(A-B) using previous results and algebra of trigonometric functions.

sin(A-B)
    =sin(A+(-B))
    =sinAcos(-B)+cosAsin(-B)
    =sinAcosB-cosAsinB

cos(A-B)
    =cos(A+(-B))
    =cosAcos(-B)-sinAsin(-B)
    =cosAcosB+sinAsinB

proof for sin(A-B) and cos(A-B)

Geometrical proof for sin(A-B) and cos(A-B) is outlined below.

equate square of chord lengths to derive the result given.

RT¯2=PQ1¯2
sin(A-B)=sinAcosB-cosAsinB

RS¯2=PQ¯2
cos(A-B)=cosAcosB+sinAsinB

example

Compute sin75.

The answer is consider 75 as sum of standard angles 45 and 30'.

sin75
  =sin(45+30)
  =sin45cos30+cos45sin30
  =1+322

summary

sin(A-B)=sinAcosB-cosAsinB
cos(A-B)=cosAcosB+sinAsinB

Outline

It is advised to do the firmfunda version of "basics of Trigonometry" course before doing this.

The outline of material to learn "Advanced Trigonometry" is as follows.
Note: go to detailed outline of Advanced Trigonometry

    →   Unit Circle form of Trigonmetric Values

    →   Trigonometric Values in all Quadrants

    →   Trigonometric Values or any Angles : First Principles

    →   Understanding Trigonometric Values in First Quadrant

    →   Trigonometric Values in First Quadrant

    →   Trigonometric Values of Compound Angles: Geometrical Proof

    →   Trigonometric Values of Compound Angles: Algebraic Proof

    →   Trigonometric Values of Compound Angles: tan cot

    →   Trigonometric Values of Compound Angles: more results