firmfunda
  maths > integral-calculus

Integration by Partial Fraction


    what you'll learn...

Overview

Integration Methods :

 »  Standard forms with simple substitution

   1ax±b : use 1y form

   1(ax±b)n use y-n form

   1ax±b use y-12 form

 »  Standard forms with trigonometric substitution

   1x2+a2 use trigonometric identity tan2θ+1=sec2θ

   1x2+a2 use trigonometric identity tan2θ+1=sec2θ

   1x2-a2 use trigonometric identity sec2θ-1=tan2θ

   1a2-x2 use trigonometric identity 1-sin2θ=cos2θ

 »  Integration by Partial Fraction

   1x2-a2 convert to Ax+a+Bx-a

   px+q(x+a)(x+b) =Ax+a+Bx+b

   px+q(x+a)2 =Ax+a+B(x+a)2

   px2+qx+r(x+a)(x+b)(x+c) =Ax+a+Bx+b+Cx+c

   px2+qx+r(x+a)2(x+b) =Ax+a+B(x+a)2+Cx+b

   px2+qx+r(x+a)(x2+bx+c) =Ax+a+Bx+Cx2+bx+c

 »  Integration by Partial Fraction, when denominator cannot be factorized

   1ax2+bx+c convert denominator to y2±k2 form

   1ax2+bx+c convert denominator to y2±k2 form

   px+qax2+bx+c convert to two terms, first with numerator as derivative of denominator + second with a constant by denominator
(ax2+bx+c)ax2+bx+c+Aax2+bx+c

   px+qax2+bx+c convert to two terms, first with numerator as derivative of the quadratic equation + second with a constant by denominator
(ax2+bx+c)ax2+bx+c+Aax2+bx+c

substitution example

To integrate 13x+4dx, substitute y=3x+4

Integrating 13x+4dx by substitution.

13x+4dx

=13d(3x+4)3x+4

using dyy=lny+c
=13log(3x+4)+c

substitution again

To integrate 1(3x+4)3dx, substitute y=3x+4

Integrating

1(3x+4)3dx by substitution

=13d(3x+4)(3x+4)3

using yndy=(n+1)yn+1+c
=-231(3x+4)2+c

extending that

Integration of functions that involve division by polynomial is another form that needs to be studied. For example, consider 1x2+3x+2 to solve this, "factorize the polynomial and convert the ratio into sum of ratios".

Integrating 1x2+3x+2dx

Factorizing denominator x2+3x+2=(x+1)(x+2)

Perform Partial fraction decomposition 1x2+3x+2=Ax+1+Bx+2

A and B can be calculated by equating numerators of LHS and RHS.

naming it

Partial fraction decomposition:

1x2+3x+2=Ax+1+Bx+2

1x2+3x+2=(A+B)x+2A+B(x+1)(x+2)

denominators are equal, and so, equate numerators to find A and B
A+B=0 and 2A+B=1 gives A=1 and B=-1

So1x2+3x+2=1x+1-1x+2

This can be integrated.


example

Integrate 3x-2(x+1)2(x+3)dx

The answer is "114ln|x+1x+3|+52(x+1)+c".

summary

Standard forms of integration in division by polynomial: simple substitution

   1ax±b : use 1y form

   1(ax±b)n use y-n form

   1ax±b use y-12 form

Standard forms of integration in division by polynomial: trigonometric substitution

   1x2+a2 use trigonometric identity tan2θ+1=sec2θ

   1x2+a2 use trigonometric identity tan2θ+1=sec2θ

   1x2-a2 use trigonometric identity sec2θ-1=tan2θ

   1a2-x2 use trigonometric identity 1-sin2θ=cos2θ

1x2-a2 is left out

Standard forms of integration in division by polynomial: Converting to partial fractions

   1x2-a2 convert to Ax+a+Bx-a

   px+q(x+a)(x+b) =Ax+a+Bx+b

   px+q(x+a)2 =Ax+a+B(x+a)2

   px2+qx+r(x+a)(x+b)(x+c) =Ax+a+Bx+b+Cx+c

   px2+qx+r(x+a)2(x+b) =Ax+a+B(x+a)2+Cx+b

   px2+qx+r(x+a)(x2+bx+c) =Ax+a+Bx+Cx2+bx+c

Standard forms of integration in division by polynomial: Converting to partial fractions

when denominator cannot be factorized.

   1ax2+bx+c convert denominator to y2±k2 form

   1ax2+bx+c convert denominator to y2±k2 form

   px+qax2+bx+c convert to two terms, first with numerator as derivative of denominator + second with a constant by denominator
(ax2+bx+c)ax2+bx+c+Aax2+bx+c

   px+qax2+bx+c convert to two terms, first with numerator as derivative of the quadratic equation + second with a constant by denominator
(ax2+bx+c)ax2+bx+c+Aax2+bx+c

Outline

The outline of material to learn "Integral Calculus" is as follows.

•   Detailed outline of Integral Calculus

    →   Application Scenario

    →   Integration First Principles

    →   Graphical Meaning of Integration

    →   Definition of Integrals

    →   Fundamental Theorem of Calculus

    →   Algebra of Integrals

    →   Antiderivatives: Standard results

    →   Integration of Expressions

    →   Integration by Substitution

    →   Integration using Identities

    →   Integration by Parts

    →   Integration by Partial Fraction

    →   Integration: Combination of Methods