firmfunda
  maths > complex-number

Properties of complex conjugate


    what you'll learn...

Overview

 »  Complex conjugate

    →  distributes into addition, multiplication, and power
    →  z1+z2¯=z1¯+z2¯
    →  z1×z2¯=z1¯×z2¯
    →  zn¯=(z¯)n

    →  modulus of the conjugate equals the modulus of the number
    →  |z¯|=|z|

    →  argument of the conjugate is negative of the argument of the number
    →  arg(z¯)=-arg(z)

conjugate of sum

Given z1=a1+ib1 and z2=a2+ib2, the conjugate of sum z1+z2¯ =z1¯+z2¯

Conjugate of Sum or Difference: For complex numbers z1,z2
z1±z2¯=z1¯±z2¯

Conjugate of sum is sum of conjugates.
Conjugate of difference is difference of conjugates.

conjugate of product

Given z1=a1+ib1 and z2=a2+ib2 what is the conjugate z1×z2¯?

The answer is 'z1¯×z2¯'

Conjugate of product or quotient: For complex numbers z1,z2
z1×z2¯=z1¯×z2¯
z1÷z2¯=z1¯÷z2¯

Conjugate of product is product of conjugates.
Conjugate of quotient is quotient of conjugates.

conjugate of power

Given z=a+ib, the conjugate zn¯ =(z¯)n

Conjugate of Power or Root: For a complex number z
zn¯=(z¯)n
z1n¯=(z1¯)1n

Conjugate of a power is power of conjugate.
Conjugate of a root is root of conjugate.

modulus of conjugate

Given z=a+ib, the modulus |z¯|=|z|

Modulus of a Conjugate: For a complex number z
|z¯|=|z|

Modulus of a conjugate equals modulus of the complex number.

argument of conjugate

Given z=a+ib, the argument argz¯=-argz

Argument of a Conjugate: For a complex number z
argz¯=-argz

Argument of a conjugate equals negative of the argument of the complex number

conjugate of conjugate

Given z=a+ib, the conjugate of conjugate z¯¯=z

 • 

Conjugate or Conjugate: For a complex number z
z¯¯=z

Conjugate of a conjugate is the complex number itself.

product

Given z=a+ib, what is the product zz¯=|z|2

Product of a number and its conjugate: For a complex number z
zz¯=|z|2

Product of a number and its conjugate is the square of the modulus.

summary

Complex conjugate

    →  distributes into addition, multiplication, and power
    →  z1+z2¯=z1¯+z2¯
    →  z1×z2¯=z1¯×z2¯
    →  zn¯=(z¯)n

    →  modulus of the conjugate equals the modulus of the number
    →  |z¯|=|z|

    →  argument of the conjugate is negative of the argument of the number
    →  arg(z¯)=-arg(z)

Outline

The outline of material to learn "complex numbers" is as follows.

Note : Click here for detailed overview of Complex-Numbers

  →   Complex Numbers in Number System

  →   Representation of Complex Number (incomplete)

  →   Euler's Formula

  →   Generic Form of Complex Numbers

  →   Argand Plane & Polar form

  →   Complex Number Arithmetic Applications

  →   Understanding Complex Artithmetics

  →   Addition & Subtraction

  →   Multiplication, Conjugate, & Division

  →   Exponents & Roots

  →   Properties of Addition

  →   Properties of Multiplication

  →   Properties of Conjugate

  →   Algebraic Identities